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Abstract--The continuum mechanics of two-phase systems involving surface tension and surface 
properties is discussed. 

The integral forms of the balance laws are given for the following quantities: mass, linear momen- 
tum, angular momentum, total energy and entropy. Starting from these integral balance laws, 
the jump conditions and the entropy source at the interface are derived. 

1. I N T R O D U C T I O N  

In continuum mechanics the global conservation laws are reduced to local partial differential 
equations if one considers a point which does not belong to a surface of discontinuity. These 
partial differential equations express the local balances of the following fundamental 
quantities: mass, linear momentum, angular momentum, total energy and entropy. When- 
ever one considers a point belonging to a surface of discontinuity (Truesdell 1960) the local 
balance laws are no longer formulated in terms of partial differential equations, but in 
terms ofj ump conditions which relate the values of the fundamental quantities on both sides 
of the interface. 

Jump conditions are of the utmost importance in the study of two-phase systems com- 
posed of fluid-fluid, fluid-solid or solid-solid couples. This latter case is seldom quoted 
but some authors recently used jump conditions in some problems of strength resistance 
(Freund 1970) or solid state physics (Ghez 1966). 

The interest in studying jump conditions in two-phase systems is 3 fold: 

- -Jump conditions give the boundary conditions in a correct and straightforward way for 
the problems which involve a dynamical phase change. 

- -Jump conditions provide some relations between the interaction terms arising in two 
fluid models of two-phase systems (Delhaye 1968a, b; Vernier & Delhaye 1968; Ishii 
1971; Kocamustafaogullari 1971; Bour6 1972, 1973a, 1973b; Rrocreux 1973). 

- -Jump conditions enable the derivation of the local interfacial entropy source. 

This local interfacial entropy source is itself of an utmost importance: 
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--I t  formulates the second law of thermodynamics. According to this law the entropy 
source has to be positive or null. Therefore, it is easy to judge the soundness of a two- 
phase flow model by deriving the entropy generation rate and by checking if the result 
is positive or null. 

- - I t  may give a formulation of the constitutive laws because it can be expressed as a bilinear 
function of thermodynamic fluxes and forces. 

--I t  enables to put some restrictions on the proposed constitutive laws (Fisher & Leitman 
1970). 

Two kinds of jump conditions can be derived: primary jump conditions and secondary 
ones. 

--The primary jump conditions are directly derived from the global balance laws written 
for the following fundamental quantities: mass, linear momentum, angular momentum, 
total energy, entropy. 

--The secondary jump conditions are derived from the primary ones. They are written for 
the following quantities: mechanical energy, internal energy, enthalpy, entropy. 

The above jump conditions reduce to the shock equations obtained either in inviscid 
fluid (Serrin 1959) or in weakly dissipative fluid (Germain 1960, 1961, 1964). 

Phase change, surface tension and surface material properties have partially appeared in 
jump conditions for several years. Landau & Lifschitz (1959) and Wehausen & Laitone 
(1960) gave the momentum condition without any demonstration, in the case where there is 
neither phase change nor surface material properties. Scriven (1960) gave the first a deriva- 
tion of a momentum jump condition which took into account surface tension and surface 
material properties but which neglected the phase change. Independently, Ghez & Puiz 
(1963) gave a different derivation but obtained the same result as Scriven (1960). Ghez (1964) 
derived an internal energy jump condition which seems to be erroneous. Slattery (1964) 
brought some corrections to the derivation of Scriven (1960) and obtained the linear and 
angular momentum jump conditions taking into account phase change, surface tension 
and surface material properties. This derivation was improved a few years later (Slattery 
1967, 1968). Ghez (1966) found the energy jump condition and the entropy source in the same 
conditions as Slattery (1964). The entropy source calculated by Ghez (1966) was irrelevant 
but was corrected in a later publication (Ghez 1970). Independently from Ghez (1966), 
Delhaye (1968b) derived an energy jump condition which took into account a phase change 
and surface tension. Likht (1969) gave the same condition but in a wrong form. Drew (1971) 
gave the primary jump conditions under a global form, i.e. extended to a portion of interface. 
In his derivation, Drew (1971) took into account the phase change, surface tension and 
surface material properties. In the book by Barr~re & Prud'homme (1973), the results of 
Ghez (1966, 1970) were recovered with an original method which entirely ignored the 
common mathematical works on surface theory (Weatherburn 1927; McConnell 1957; 
Aris 1962). 

In the case where the surface tension is not taken into account, Standart (1967a; 1968) 
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gave an expression for the entropy source, also obtained by Campion & Lemaigre (1970). 
Fer (1971) found a similar formulation for reactive two-phase systems. The particular case 
of annular flows was examined by Giot & Fritte (1972). 

In this paper, we derive the jump conditions in the case of two-phase flows involving 
surface tension and surface properties. The integral forms of the balance laws are given for 
the following quantities: mass, linear momentum, angular momentum, total energy and 
entropy. 

Starting from these global balance laws, we derive the primary local laws (directly 
deduced from the global laws) and the secondary local laws (deduced from the primary local 
laws). Then follows the derivation of the entropy source. 

The local laws are derived from the global ones with the help of a method which was 
already used by Truesdell (1960); Standart (1964); Delhaye (1968a, b); Vernier & Delhaye 
(1968); Slattery (1972). The mathematical rools can be found in the books by Weather- 
burn (1927); McConnell (1957) & Aris (1962). 

2. TWO-PHASE SYSTEMS WITH SURFACE TENSION AND SURFACE PROPERTIES 

2.1 The global balances 

Consider a material volume V(t) cut by an interface di(t). This interface divides the 
material volume into two non-material volumes ~ 1(0 and ~2(t), respectively limited by the 
surfaces d l(t) and di(t), dz(t)  and di(t) (figure 1). The portion ~ ( t )  of the interface located 
inside the volume ~(t) is limited by the curve ~(t). As the volume ~(t) is material, the 
surfaces all(t) and d2(t) are also material and we have at each point belonging to these 
surfaces: 

v . n  = v ~ . n  [1]  

where v~ • n is the speed of displacement of the surface and v the velocity of a particle. 
The interface d~(t) is not a material surface and a mass transfer may occur between the 

volumes ~(t)  and ~2(t) through di(t). 

Figure 1. Diagram for global balances. 
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We assume that on the interface the tangential velocities are continuous, namely 

v~ = v~, [23 

but the temperatures are not necessarily continuous: 

T I ~ T 2. [3] 

Balance of mass. The mass contained in the material volume is constant with time: 

d f , . ( ,  d d p, d ~  + ~ f.. . p2d~ + ~t f~.,.)p,d.& = O [4? 

where Pk is the density of phase k and Pi is the surface density (mass per unit of surface). 
Balance of linear momentum. The external forces acting on the surface d i ( t )  and its 

boundary cO(t) are the external forces per unit of mass (gravity forces) and the line forces. In 
the three dimensional case, the elementary force acting on the surface element d d  is: 

n .  ~ z d ~  

where n is the stress tensor and n the unit normal vector to the surface element. Similarly 
we could write that the force acting on the line element of the curve ~(t) is: 

N . a d ~  

where a is the surface stress tensor and N the unit normal vector located in the tangent 
plane and directed outward the area ~¢i(t). 

If we assume that the surface fluid is inviscid we can say that this force reduces to: 

Na dC~ 

where a is the surface tension (a scalar). Notice that this scalar has the same role as the 
pressure p (or more exactly - p )  in the three dimensional case. 

The balance of linear momentum can then be stated in the following way: The time-rate 
of change of the linear momentum of the moving material control volume ~ ( t )  is equal 
to the sum of the external forces acting on: 

- - the  volumes ~ ( t )  and ~2(t): external forces per unit of mass F~ and F 2 . 

- - t he  interface ~¢i(t): external force Fi per unit of mass. 

- - t he  surfaces ~¢a(t) and ~¢2(t): stresses 7~ 1 and ~2. 

- - t he  line c~(t) surface tension a. 

p,vp d d  = plF1 d ~  Plvl d ~  + ~ p2v2 d ~  + ~ , )  ,m 
t(t) 2(0 , 

+ f , .  p2F2d3v+f~¢  piFid,~c+f~¢ nl'r/:ld,5~¢' 
2(t) ~(t) ~(t) 

+ f~c2(t)n2.Tg2 d.~ + ~(¢(t)o'NdC~'. [5] 
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Balance of angular momentum. The time rate of change of the angular momentum of the 
volume ~t/(t) is equal to the resultant of the external torques acting on the volume 9/'(t), 
the interface ~i( t )  and their boundaries ~ 1  (t), ~ 2  (t) and of(t): 

df df f --  r x plvl d ~  + ~ r x f12v2 d~t r + ~ r × pivp da = r × plF1 d~t/" 
dt ,(t) w) ~,(t) w) 

+ f ~  r × p 2 F 2 d ~ / / ' + f ~  r × p i F i d ~  
2(0 i(t) 

+ f~, r × (n ' rCl)d~f+f~¢ r × (n2.Tz2)d~/ 
i(t) 2(t) 

+ ~ r × aN dC~ [6] 
(t) 

where r is the position vector. 

Balance of total energy. The time rate of change of the total energy (kinetic energy and 
internal energy) of the volume ~F(t) is equal to the sum of: 

- - the  power of the external forces acting on ~(t), ~/~(t), .~2(t), ~i(t), c6~(t), 
- -and the heat fluxes ql, q2, qi, entering the volume ~/(t) through ~l(t) ,  .~2(t) and ~(t). 

d f3 f 1 2 d f ~  1 2 u2)d](/-  d f~, p 1 2 - -  p2(~V2 + + ~ i(u i + ~vp) d:d p~(~v~ + u~) d ~  + d i  ~(,) dt w) ,(t 

= r e  plF1 " V l d ~  + f~ P2F2 • v2 d ~  
1(0 2(t) 

+ f d  p ~ i . v p d ~ + ~  ( n l - / t l ) . V l d ~ ¢  
~(t) ~(t) 

+ f~2,)(n2 • lr2) • v2 d ~ / +  ~ ovp.N d~ 
(t) 

- f ~  q l - n l d ~ - f ~  q 2 . n 2 d ~ - ~  qi .Nd~f  [7] 
l(t) 2(0 (t) 

where Uk and ui are the internal energy per unit mass of phase k and interface, respectively. 
The normal component of vp is the speed of displacement of the interface and its tangential 
component is equal to the tangential components of the fluid velocities: 

Vp = (V i ' n k ) n  k + V t. [8]  

Entropy evolution. The first law of thermodynamics is expressed by the total energy 
balance [7]. The second law of thermodynamics is now formulated in terms of an inequality 
since the second law is an evolution law. Nevertheless, this inequality can be transformed 
into an equation by introducing an entropy generation term which must be positive for an 
irreversible evolution or equal to zero for a reversible one. According to the second law, 

J.M.F., Vol. 1, No. 3--B 
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the time rate of change of the volume ~( t )  is equal to the sum of the influx of entropy due 
to conduction through ~¢1(t), d2(t), ~{t) and of the entropy sources in ~l(t), ~/2(t) and on 

d d d p i s i d d  + - - q l  .n l  d.~¢ 
p2s2 d~U + dtt ,(, d t  ,(t) p l S l  d ~  + dt ~(,) ,(t) Ti 

f l ~ 1  + T2 q2 "n2  d ~  + qi • N d ~  
2(t) (t) T// 

= f ~  A x d ~ + f ~  A 2 d ~ + f  A i d d _ > 0  [9] 
l(t) 2(t) .~1 i(t) 

where the equality occurs only for a reversible evolution. In this relation, s k is the entropy 
per unit of mass of phase k, s i the entropy per unit of mass of the interface, T k the absolute 
temperature in phase k, T~ the absolute temperature on the interface, A k the local entropy 
source per unit of volume and per unit of time in phase k and Ai the local entropy per unit 
area and per unit of time on the interface. 

As we have, according to [9] : 

f~ a,d~+f~ A~d~+f~, zX, d~¢_>0 
l(t) 2(0 i(t) 

whatever ~l(t),  3~2(t ) and SJi(t ) are, we get: 

Ak _> 0 [10] 

A i _> 0. [11] 

2.2 The primary jump conditions 

Starting from the global balances of mass [4], linear momentum [5], angular momentum 
[6], total energy and from the entropy evolution [9], we derive the primary jump conditions 
by using the Leibniz rule {A1),* the surface Reynolds transport theorem (A2), the Gauss 
theorems, and the special forms of the latter (A3) and (A4). In that manner, we obtain a 
sum of two volume integrals and a surface integral. The volume integral furnishes the local 
partial differential equations valid in each phase, the surface integral furnishes the jump 
conditions valid on the interface only. 

Mass jump condition. 

w i t h  ?hk = Pk(Vk - -  Vi). nk, 

Linear momentum jump condition. 

with 

?hl "~- ?h2 = ?hi [12] 

(k = 1, 2,) ?hi = dpi/dt + p~Vs" %: [13, 14] 

1~1 + 1i2 = l i i  

Pk = rfikVk -- nk" nk, (k = 1, 2) 

Pi = Pi dvv/dt + vv?hi - P~i - V~a + (Vs" n)an. 

[15] 

[16] 

[17] 

* See Appendix. 
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with 

Angular momentum jump condition. 

Total energy jump condition. 

401 

The derivation leads to the same condition as [15]. 

, 2 - ( n  k - n k ) . v  k [ 1 9 ]  ek = ??lk(Uk -~ 2Ok) -~ q k ' n k  

d 1 2 " 
ei =- Pl-dr (ui q- Iv2)  -k (u i @ ~vp)m i - p i F i . v p  q- V s • ql - Vs"  (o'vt). [20] 

Entropy evolution. 

i 1 d s  i ql 
Ai = --this1 -- rh2s2 - ~1~-ql "nl - ~22q2"n2 + P i - ~  + sirhi + Vs'-~ >_ O. [21] 

1i 

2.3 The secondary local equations 

Kinetic or mechanical energy equation. Multiplying the momentum equation [15] by 

the velocity vector Vp, we get: 

d 
thlV I " Vp + ?h2V 2 " Vp - -  ( ~ 1 "  h i ) "  Vp - -  (n  2 • n2). vp - Pi d t  (102) + p iFi"  Vp d- Vp.  Vst7 

- (V s • n)aVp, n - v2rhi = O. [22] 

Internal energy jump condition. Subtracting the mechanical energy jump condition [22] 

from the total energy jump condition [18] we obtain: 

1 2 "Vp) -'~ m2(U2 "~ ~V 2 - -  V 2 "Vp) ~- ql "h i+q2  "n2 Yhl(Ul + ~.Vl _ Vl 1 2 - -  ( l t  1 • n l ) ,  (v I - -  vp) 

dui - ]Vp)mi - -  (71: 2 . n 2 ) . ( v  2 - -  V p ) - -  P i ~  (U i __ I 2 • 

- Vs" qi + ~Vs .vp = 0. [ 2 3 ]  

Enthalpyjump condition. Introduce the following quantities: 

- - the  enthalpies i k defined by: 

ik = Uk .~_ P k_k 
PR 

- - t he  deviatoric stress tensors "[k defined by: 

~k = - -  Pk  Off -k- r k 

- - t he  surface enthalpy defined by: 

(k = 1,2) [24] 

(k = l, 2) [25] 

(7 
I i ~ U i - -  _ _ .  

Pl 
[26] 
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Taking into account equations [24]-[26] and [14], the internal energy jump condition 
can be changed into the following form: 

1,2 1 2 • % )  + q l ~hl(il q- ~/~1 - Vl .Vp) Jr- rh2( i  2 4- )-u 2 - v 2 .n~  -Jr- q2 "n2 - ('fl " H i ) ° ( ¥ 1  - Yp) 

d i  i d t7  (ii 1 2 • - ~vp)ml - V~. ql = O. 
- ( %  • n 2 ) ' ( v 2  - v p )  - Pi dt dt 

[27] 

Entropy jump condition. In order to transform the enthalpy jump condition [27] into an 
entropy jump condition, we have to introduce the free enthalpies defined by: 

gk = ik - -  TkSk (k = 1, 2) [28] 

gi = i~-  Tisi. [29] 

The Gibbs equation, written for the interface, has the following form: 

d u  i d s  i _ o d p i "  [30] 
d t - T~ a t  p 7  d--[ 

Taking into account equations [28]-[30], the enthalpy jump condition [27] becomes: 

1 2 rhl(TlSl + gl + ~vl - Vl "v,) + rha(Tzs z + g2 + lV2 --  V2" Vp) + ql ' nl + q2 "n2 

- -  (~1 ° n t ) . ( v  x --  Vp) -- ( % "  n 2 ) . ( v  2 --  Vp) 

d s i  1 2 • 
- p i T ~  - (Tis i + gi - ~vp)mi - V,.qi = 0. [31] 

2.4. The interfacial entropy source 

In the case of single-phase flow, the local entropy source is obtained from the secondary 
local equations. More precisely (Slattery 1972), the entropy evolution equation (primary 

Primary jump 
conditions 

General formulation 1 
of the entropy source 

First particular form 
of the entrovy source 

GENERAL M E T H O D  

Equivalence 

Entropy evolution 
(primary jump condition) 
+ secondary jump conditions 

T I ~ T 2 = _ T  i ) 

Second particular form 
of the entropy source 

PARTICULAR METHOD 
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equation) is combined with the entropy equation (secondary equation deduced from the 
internal energy equation through the Gibbs relation). Now, as far as the jump conditions 
are concerned, we follow a different method which is represented in the diagram. 

In the general method, we start from the following primary jump, conditions: 

--mass [12], 
--momentum [ 15], 
--total energy [18], 
--entropy evolution [21]. 

By combining these jump conditions we get the general form of the local interface entropy 
source: 

[1  (P2 1 2 )  l ( p  x lv2) l  + l i , . (  1 v 1 ) 
Ai----ff/l T22 ~ -g2 +~v2 -Ti-i Pll gl A-~ ~ i -~2v 2 

(, i) ) 14] +61-~2-~ + m'k~lSVp - gi - T21p2 - g2 + ~ 

(1 l v ) ( 1  1) (1) 

or, in a more symmetrical form: 

1 

The first particular form is obtained by putting: T 1 - T z - T~ in the general expression 
[32]. We get: 

P 2 - - g 2  - -  v 2  + - -  - -  P l  g l  "3t- [~1 ° (Vl  - -  ¥ 2 )  + Tiq~. Vs 

[( ) (P~ Iv~)]+p,.(v:-v~) +~', ~ 4 - g ,  - ~ g2 +-~ 

o r :  

T~A,= m~[(-~vp" 1 2 - g') - ( ~ v2 + p-Lpl - -  g l ) ] + r h 2 [ ( ~ v 2 - g ' ) - (  lv~ 

[34] 

g2)] 
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(l) 
"t'- 1~1 ° (¥1 - -  Vp) + 1~2. (V 1 --  Vp) -I- T iq i"  Vs Ti ' E35] 

In the particular method, we start from the primary jump condition on the entropy [21] 
and from the secondary jump condition on the entropy [31], after assuming that, on the 
interface T1 =- T2 - Ti,  we obtain: 

[ 1 _ __1 (~1 n l ) ,  n l l .  TiAi = rhl g l  - gi + 2 ( v 1  - Vp) 2 /91 

I 1 
q- gh2 g2 --  gi + ~ (¥2 --  Vp) 2 - -  - -  

which can be shown to be identical to [35]. 

1 7 
(x2 • n2). n2/ 

P2 3 

[36] 

We could have derived an entropy source without taking into account the surface 
properties, keeping only the surface tension effect. In this case, the analogous expression 
of [36] can be shown to be (Delhaye 1974): 

[ 1 1 ] 
T/AI = rh l  g l  + ~ v2 - vl .vp - - - (~x "n~) 'n l  

Pl 

[ 1 1 ] 
+rh2 g2+Sv~-vE'Vp --(~2"n2)'n2 

P2 

+ aV~-vp _> 0. [37] 

Equation [36] cannot be reduced to [37] because of the surface divergence term in the 
latter. Let us see the kind of inconsistency we can get if we do not take into consideration 
the material properties of the interface to derive the entropy source [37]. 

Consider a gas sphere in a liquid. The radius is a function of time. If there is no mass 
transfer through the interface and if there is no temperature jump across the interface, the 
entropy source is equal to zero [36]. But following [37] we have: 

1 
A i = ~/crV~. vp. [38] 

If the gas sphere has a purely radial motion, we obtain: 

2ag 
Ai - I39] 

TiR 

where/~ is the time derivative of R. Then, the entropy source can be negative if the radius 
decreases, which violates the second law of thermodynamics. 

The important conclusion is that it is necessary either to account simultaneously for 
the surface tension and the surface material properties or neither one. We have to point 
out that it is normal to get some inconsistency, if the surface tension is introduced without 
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the surface properties for the surface tension, and the surface properties are connected 
through [26] and Gibbs relation [30]. Consequently, it seems logical that the inconsistency 
appears with the enthalpy jump condition. 

In conclusion, if we write the jump condition and the entropy source with the surface 
tension only, the surface density Pi and the surface heat flux ql must vanish. 

3. CONCLUSIONS 

In this paper, we systematically formulated the jump conditions and the interface entropy 
source for a two-phase system in the absence of electromagnetic phenomena. Surface 
tension and surface properties were taken into account. 

The results can be reduced to some special cases previously obtained (see for example 
Bornhorst & Hatsopoulos 1967). 

A complete set of jump conditions is provided, which has to be used in the time- or 
space-average formulations of two-phase flow models (Ishii 1974). 

It has been shown that it was necessary to take into account simultaneously the surface 
tension and the surface properties to derive consistent jump conditions and entropy 
sources. 

Acknowledgements--The author wishes to thank Dr. N. Zuber and Dr. M. Ishii for the 
helpful discussions they had together while the author was a visiting scientist at the School 
of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga. 

The author is also indebted to Dr. J. Bout6 for having discussed the manuscript. 

REFERENCES 

ARIS, R. 1962 Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice-Hall. 
BARRI~RE, M. & PRUD'HOMME, R. 1973 Equations Fondamentales de ['A~rothermochimie. 

Masson. 
BOURI~, J. & RI~OCREUX, M. 1972 General Equations of Two-Phase Flows: Application 

to Critical Flows and to Non Steady Flows. Fourth all Union Heat and Mass Transfer 
Conference, Minsk. 

BouRn, J. 1973a Dynamique des l~coulements Diphasiques: Propagation des Petites 
Perturbations. CEA-R-4456. 

BOURn, J. FRITTE, A., GIOT, M. & R~OCREUX, M. 1973b Choking Flows and Propagation 
of Small Disturbances. European Two-Phase Flow Group Meeting, Brussels. 

BORNHORST, W. J. & HATSOPOULOS, G. N. 1967 Analysis of a liquid vapor phase change 
by the methods of irreversible thermodynamics. J. appl. Mech. 34, 840-846. 

CAMPION, G. & LEMAIGRE, E. 1970 Recherche d'une Formulation Permettant d'Appliquer 
la Thermodynamique des Processus en Non-l~quilibre aux l~coulements Diphasiques. 
Universit6 Catholique de Louvain (Belgique), D6partement Thermodynamique et 
Turbomachines, Travail de fin d'6tudes. 



4 0 6  J. M. DELHAYE 

DELHAYE, J. M. 1968a Equations Fondamentales des l~coulements Diphasiques. Premi6re 
Partie: Equations G6n6rales de Conservation. CEA-R-3429 (1). 

DELHAYE, J. M. 1968b Equations Fondamentales des l~coulements Diphasiques. Deuxi6me 
Partie: Compl6ments et Remarques. CEA-R-3429 (2). 

DELHAYE, J. M. 1974 Conditions d'Interface et-Sources d'Entropie dans les Syst6mes 
Diphasiques. CEA-R-4562. 

DREW, D. A. 1971 Averaged field equations for two-phase media. Studies appl. Math. 50, 
133-166. 

FER, F. 1971 Thermodynamique Macroscopique. Tome 2." Systbmes Ouverts. Gordon & 
Breach. 

FISHER, G. M. C. & LEITMAN, M. J. 1970 Continuum thermodynamics with surfaces: 
restrictions on constitutive equations. Quart. appl. Math. 28, 303-311. 

FREUND, L. B. 1970 Conditions at a propagating interface of two media. J. appl. Mech. 
190-192. 

GERMAIN, P. & GUIRAUD, J. P. 1960 Conditions de choc dans un fluide dou6 de coefficients 
de viscosit6 et de conductibilit6 thermique faibles mais non nuls. C.r. Acad. Sci. 250, 
1965-1967. 

GERMAIN, P. & GUIRAUD, J. P. 1961 Conditions de chocs dans un fluide faiblement dissipatif 
en mouvement non stationnaire. C.r. Acad. Sci. 252, 1101-1102. 

GERMAIN, P. 1964 Conditions de choc et structure des ondes de choc lorsqu'on tient 
compte des effets de dissipation dans le fluide. Fluid Dynamics Transactions, Vol. 1, 
pp. 287-296 (Ed., FISZDON, W.). Pergamon Press. 

GHEZ, R. & PIUZ, F. 1963 A generalized surface stress. Phys. Lett. 4, 275-276. 

GHEZ, R. 1964 Un mod61e-surface de Gibbs g6n6ralis6. Heh,. Phys. Acta 37, 619-620. 

GHEZ, R. 1966 A generalized gibbsian surface. Surface Sci. 4, 125 140. 
GHEZ, R. 1970 Irreversible thermodynamics of a stationary interface. Surface Sci. 20, 

326-334. 
GIOT, M. & FRITTE, A. 1972 Two-phase two- and one-component critical flows with the 

variable slip model. Progress in Heat and Mass Transfer, Vol. 6, pp. 651-670 (Eds., 
HETSRONI, G., SIDEMAN, S. & HARTNETT, J. P.). Pergamon Press. 

IsI-m, M. 1971 Thermally Induced Flow Instabilities in Two-Phase Mixtures in Thermal 
Equilibrium, Ph.D. Thesis. Georgia Institute of Technology, School of Mechanical 
Engineering. 

IsnII, M. 1974 Thermo-Fluid Dynamic Theory of Two-Phase Flow Based on Time-Average, 
to be published. 

KOCAMUSTAFAOGULLARI, G. 1971 Thermo-Fluid Dynamics of Separated Two-Phase 
Flow, Ph.D. Thesis. Georgia Institute of Technology, School of Mechanical Engineering. 

LANDAU, L. D. & LIFSHITZ, E. M. 1959 Fluid Mechanics. Pergamon Press. 

LIKHT, M. K. & STEINBERG, V. A. 1969 Les conditions dynamiques sur une interface 
mobile. J. appl. Mech. Tech. Phys. 3, 58-64. 

MCCONNELL, A. S. 1957 Applications of Tensor Analysis. Dover. 
R~OCREUX, M. 1973 D6bits critiques. CEA-N-1639. 



JUMP CONDITIONS AND ENTROPY SOURCES IN TWO-PHASE SYSTEMS. LOCAL INSTANT FORMULATION 407 

SCRIVEN, L. E. 1960 Dynamics of a fluid interface. Equation of motion for Newtonian 
surface fluids. Chem. Engng Sci. 12, 98-108. 

SERRIN, J. 1959 Mathematical principles of classical fluid mechanics. Encyclopedia of 
Physics, Vol. 8, p. 1. Springer. 

SLATTERY, J. C. 1964 Surfaces--I. MomenttLrn and moment-of-momentum balances for 
moving surfaces. Chem. Engng Sci. 19, 379-385. 

SLATTERY, J. C. 1967 General balance equation for a phase interface. I & E.C. Fund. 6, 
108-115. 

SLATTERV, J. C. 1968 Correction "General balance equation for a phase interface". 
L & E.C. Fund. 7, 672. 

SLATTERY, J. C. 1972 Momentum, Energy and Mass Transfer in Continua. McGraw-Hill. 
STANDART, G. 1964 The mass, momentum and energy equations for heterogeneous flow 

systems. Chem. Engng Sci. 19, 227-236. 
STANDART, G. 1967a The moment of momentum and electrochemical equations for 

heterogeneous flow systems. Chem. Eng'ng Sci. 22, 1409-1415. 
STANDART, G. 1967b The second law of thermodynamics for heterogeneous flow systems 

--I .  Basic relations and the Curie theorem. Chem. Engng Sci. 22, 1417-1437. 
STANDART, G. 1968 The second law of thermodynamics for heterogeneous flow systems 

--III. Effect of the conditions of mechanical equilibrium and electroneutrality on simul- 
taneous heat and mass transfer and the Prigogine theorem. Chem. Engng Sci. 23, 
279-285. 

TRt;ESDELL, L. C. & TOUPIN, R. A. 1960 The classical field theories. Encyclopedia of Physics, 
Vol. 3, p. 1. Springer. 

VERNIER, P. & DELHAYE, J. M. 1968 General two-phase flow equations applied to the 
thermohydrodynamics of boiling nuclear reactors. Energie Primaire 4, 5-36. 

WEATHERBURN, C. E. 1927 Differential Geometry of Three Dimensions. Cambridge Uni- 
versity Press. 

WEHAUSEN, J. V. & LAITONE, L. V. 1960 Surface waves. Encyclopedia of Physics, Vol. 9. 
Springer. 

APPENDIX 

The Leibniz rule 

Let us consider a geometric volume ~(t) which is moving in space (figure A1). This 
volume ~(t)  is bounded by a closed surface ~¢(t). At a given point belonging to this surface 
~¢(t) let n be the unit normal vector, outwardly directed. The speed of displacement of the 
surface at this point is va .  n. Letflx, y, z, t) be a function of point M(x, y, z) and of time t. 

The Leibniz rule says that: 
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Figure A I. Diagram for Leibniz rule. 

It has to be noticed that the volume ~ ( t )  is a geometric volume and not necessarily a 
material volume. The Leibniz rule is a purely kinematic theorem. 

The surface Reynolds transport theorem (Aris 1962) 

The material area ~¢i(t) (figure A2) occupies a new posit ion ~¢i(t + At) at time t + At and 

the point  M shifts to M'. Let f / b e  a function defined on the surface and only on the surface. 

The Reynolds  t ransport  theorem for the material  area d i ( t )  says that : 

dt  ~{, . ,,, t dt  + f /V, .  vp d d  [A2] 

where we have: 

d f / =  lim f/(M') - f/(M) 
dt ate0 At 

} 

MM' 
v. = lira -" 

a~0  At 

Figure A2. Diagram for Reynolds transport theorem. 
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Figure A3. Diagram for Gauss theorems. 
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The Gauss theorems for a surface (Aris 1962) 

In a three-dimensional space, the Gauss theorems enable the transformation of a surface 
integral into a volume integral. Similarly, in a two-dimensional space, the Gauss theorems 
enable the transformation of a line integral into a surface integral: 

J~(~ ,t) f/N dCd = J~f t [Vsf/ - ( V s "  n)f/n] d~¢ [A3] 

(t) ~(t) 

N is the unit normal vector at a given point belonging to the curve cd(t), boundary of 
~¢i(t) (figure A3). The vector N is directed outward the area ~¢i(t) and located in the tangent 
plane. Vs is the surface del operator (McConnell 1957; Weatherburn 1927). 

qi is a vector tangent to the surface sCi(t). The surface divergence Vs. n is equal to twice the 
mean curvature. 

Sommaire--Cet article a pour objet la m6canique des syst6mes diphasiques lorsque l'on prend en 
compte la tension interfaciale et les propri6t6s thermodynamiques de l'interface. 

Les formes int6grales des bilans de masse, de quantit6s de mouvement lin6aire et angulaire, 
d'6nergie totale et d'entropie sont pos6es a priori. 

Partant de ces lois globales, on calcule les conditions d'interface et la source d'entropie b. l'interface. 

Auszug--Die Kontinuummechanik von Zweiphasensystemen, unter Beruecksichtigung von 
Oberflaechenspannung und Oberflaecheneigenschaften, wird behandelt. Bilanzgleichungen in 
integraler Form werden fuer die folgenden Groessen angegeben: Masse, Bewegungsgroesse, Drall, 
Gesamtenergie und Entropie. Ausgehend von diesen integralen Bilanzgleichungen werden die 
Sprungbedingungen und die Entropiequelle in der Zwischenschicht abgeleitet. 

Pe3mMe--B CXaTbe paccMaxpnaaexc~ Mexaunra gonxnHyyMa )layxqba3nbxx CnCTeM, ar~roqaroLtlnx 
rloaepxaocTnoe naT~l<eane n noaepxnocTnble xapaKTepncTHrn. I/InTerpaylbnhle dibOpMbl 
COOTnomenrlfi 6azanca aanbi a . a  caeayromnx Beylttqnn: MaCCbl, 2mHe~aoro MoMenTa roflrlqecTBa 
]IBl,Drean~l, yraoaoro MOMenTa Ko~rtqecgaa ~nnxeHrla, o6mefi 3Heprnri n 3nTponnn. I/Icxo,/2a i,i3 
3TnX nnTerpaJ1bHblX COOTnomennfi 6ananca, ycnoann craqra n 14CTOHHHK 3HTpOHnH Ha 
noaepxHocTn pa3aeaa no~yqaroTcs. 


